Protective effect of liposome-mediated glial cell line-derived neurotrophic factor gene transfer in vivo on motoneurons following spinal cord injury in rats  被引量:6

Protective effect of liposome-mediated glial cell line-derived neurotrophic factor gene transfer in vivo on motoneurons following spinal cord injury in rats

在线阅读下载全文

作  者:鲁凯伍 陈哲宇 侯铁胜 

机构地区:[1]Department of Orthopedic and Spine Surgery, Nanfang Hospital, First Military Medical University, Guangzhou 510515, China

出  处:《Chinese Journal of Traumatology》2004年第5期275-279,共5页中华创伤杂志(英文版)

基  金:ThisworkwassupportedbyNationalNaturalScienceFoundationofChina (30 0 0 0 0 4 8)andtheNationalBasicResearchProgram (G 19990 5 4 0 0 0 )ofChina

摘  要:Objective: To investigate the effect of liposome-mediated glial cell line-derived neurotrophic factor (GDNF) gene transfer in vivo on spinal cord motoneurons after spinal cord injury (SCI) in adult rats. Methods: Sixty male Sprague-Dawley rats were divided equally into two groups: GDNF group and control group. The SCI model was established according to the method of Nystrom, and then the DC-Chol liposomes and recombinant plasmid pEGFP-GDNF cDNA complexes were injected into the injured spinal cord. The expression of GDNF cDNA 1 week after injection was detected by RT-PCR and fluorescence microscope. We observed the remaining motoneurons in the anterior horn and the changes of cholinesterase (CHE) and acid phosphatase (ACP) activity using Nissl and enzyme histochemistry staining. The locomotion function of hind limbs of rats was evaluated using inclined plane test and BBB locomotor scale. Results: RT-PCR and fluorescence observation confirmed the presence of expression of GDNF cDNA 1 week and 4 weeks after injection. At 1, 2, 4 weeks after SCI, the number of motoneurons in the anterior horn in GDNF group ((20.4)±(3.2), (21.7)±(3.6), (22.5)±(3.4)) was more than that in control group ((16.8)±(2.8), (17.3)±(2.7), (18.2)±(3.2), P<(0.05)). At 1, 2 weeks after SCI, the mean gray of the CHE-stained spinal motoneurons in GDNF group ((74.2)±(25.8), (98.7)±(31.6)) was less than that in control group ((98.5)±(32.2), (134.6)±(45.2), P<(0.01)), and the mean gray of ACP in GDNF group ((84.5)±(32.6), (79.5)±(28.4)) was more than that in control group ((61.2)±(24.9), (52.6)±(19.9), P<(0.01)). The locomotion functional scales in GDNF group were higher than that in control group within 1 to 4 weeks after SCI (P<(0.05)). Conclusions: GDNF gene transfer in vivo can protect motoneurons from death and degeneration induced by incompleted spinal cord injury as well as enhance locomotion functional restoration of hind limbs. These results suggest that liposome-mediated delivery of GDNF cDNA might be a practical method for tre

关 键 词:Spinal cord injury Motor neurons LIPOSOME Gene therapy 

分 类 号:R651.2[医药卫生—外科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象