检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学现代焊接生产技术国家重点实验室,哈尔滨150001 [2]哈尔滨建成专用车有限公司,哈尔滨150030
出 处:《焊接学报》2004年第5期113-116,共4页Transactions of The China Welding Institution
摘 要:点焊过程监测信息与质量参数之间关系也含有较大的非线性 ,用线性模型去描述这样的关系将导致模型误差的增加。为了更好地描述点焊过程监测信息与质量参数之间的复杂关系 ,文中将神经网络理论用于点焊过程模型化。在建立点焊质量神经网络监测模型的过程中 ,发现 ,训练过程中的”假饱和”现象是减小网络模型误差的主要障碍。为此 ,分析了各种减小网络模型误差的可能途径 ,提出了相应的改善措施 ,并通过试验证明 ,所提出的观点是正确的。The relations between monitoring information and spot welding quality factors are substantially nonlinear, and it will make model error increasing to describe such relations by linear model. To describe the complex relations more reasonably, the artificial neural network (ANN) theory is applied to spot welding process modeling. During process modeling, false saturation phenomenon is a main obstacle to decrease errors of models. By analyzing this phenomenon, many valid measures to decrease the likelihood of false saturation are taken. The test results show that the measures to decrease errors of models are feasible and effective.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42