检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《金属热处理》2004年第10期43-47,共5页Heat Treatment of Metals
基 金:国家科技部 863项目 ( 2 0 0 3AA3 3 10 40 )
摘 要:根据所收集的试验数据 ,建立了预测钢的奥氏体形成温度Ac3和Ac1点的反向传播人工神经网络模型。用散点图和均方误差、相对均方误差和拟合分值 3种统计学指标评价模型的预测性能。人工神经网络预测Ac3和Ac1的 3种统计学指标分别为 2 3 8℃ ,14 6℃ ;2 89% ,2 0 6 %和 1 892 1,1 70 11。散点图和统计学指标均表明人工神经网络的预测性能优于Andrews公式。此外 ,用人工神经网络分析了C和Mn的含量对Ac3和Ac1温度的定量影响 ,计算结果表明 。The back-propagation artificial neural network was established using data collected from domestic and foreign literatures to predict the austenite formation temperatures (Ac_3 and Ac_1) of steels.Scatter diagrams and three statistical criteria--mean squared error,mean squared relative error and score of fitness were used to evaluate the prediction performance.The three criteria for predicting Ac_3 and Ac_1 using the neural network are 23.8 ℃,14.6 ℃; 2.89%,2.06% and 1.8921,1.7011 respectively.Scatter diagrams and the statistical criteria show that the prediction performance of artificial neural network is superior to that of Andrews formulae.Moreover,the quantitative effects of C and Mn contents on Ac_3 and Ac_1 temperatures were analyzed using neural network models,the results show that there exists nonlinear relationship between contents of C and Mn and the Ac_3 and Ac_1 temperatures which is mainly resulted from the interaction among the alloying elements in steels.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249