检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学电子工程系,陕西西安710072
出 处:《微电子学与计算机》2004年第11期29-32,共4页Microelectronics & Computer
基 金:国家自然科学基金资助(60072010;60272022)
摘 要:在地质普查、安全监控等众多任务中,合成孔径雷达成像系统产生着海量的图象数据,必须通过有限的通道传回地面,迫切需要一个能从图象的信息中自动检测目标或兴趣区域的智能压缩技术。为此,本文提出了一种基于标准特征检测方法的Bayes网络融合检测方法检测兴趣区域,并据此对图象的小波分解系数进行变化和编码,从而既实现高压缩,又保持了关键区域图象的质量。In many Earth observation and surveillance missions, a large amount data is collected by the on-board SAR, and must be transmitted to ground through a channel with the limited capacity; in this case, one algorithm of intelligent compression that can select region of interest or target automatically on-board is needed. In this paper, we propose an algorithm for ROI of on-board image selection, which can separate the underlying image features from the speckle noise based on fusion and Bayes Neural Network. And then, we can achieve a good compression ratios as well as making sure that the import targets and areas of interest are not removed and degraded.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.95.6