检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江大学药物信息学研究所,杭州310027 [2]浙江大学医学院附属第一医院,杭州310003
出 处:《化学学报》2004年第19期1917-1921,共5页Acta Chimica Sinica
基 金:国家 863计划 (No.2 0 0 3AA2Z2 0 0 2 );浙江省科技计划 (No.2 0 0 4C330 2 6)资助项目
摘 要:采用径向基神经网络算法对一组已知样品的核苷及内标物浓度与毛细管电泳峰面积数据进行回归计算 ,建立峰面积与核苷浓度之间的关系模型 ,对未知样品中待测核苷浓度作出预测 ,形成了毛细管电泳定量分析新方法 .将其用于鸟嘌呤核苷含量测定 ,所建模型预测结果平均相对误差为 0 86% ,明显低于线性回归及BP神经网络模型的 2 60 %和 1 0 7% .研究结果表明 ,本方法简便易用 ,能有效提高毛细管电泳定量分析的准确度 ,优于线性回归及BP神经网络法 .A new method for calibration modeling of capillary electrophoresis (CE) is a nonlinear regression based on radial basis function network (RBFN). The RBFN was trained with a set of known concentration data and CE peak area of guanosine and internal standards to establish the calibration model between the concentration of guanosine and its peak area. Subsequently, the RBFN model established can predict the concentration of guanosine by the peak area of guanosine and internal standards. For comparison, the calibration modeling of CE was carried out using a linear regression equation, BP artificial neural network ( BP-ANN) and RBFN approaches. The results of predicting the concentration of guanosine showed that the RBFN model had a lower mean relative error of prediction (0.86%) than those of linear regression equation (2.60%) and BP-ANN model (1.07%). The method is easy to be used and can effectively improve the accuracy of CE quantitative analysis.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249