检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姚锡凡[1] 张毅[2] 董绍强[3] 姚小群[1]
机构地区:[1]华南理工大学机械工程学院,广东广州510640 [2]广东交通职业技术学院航海系,广东广州510800 [3]马萨诸塞大学机械与工业工程系,马萨诸塞州01003
出 处:《计算机集成制造系统》2004年第11期1466-1470,共5页Computer Integrated Manufacturing Systems
基 金:国家自然科学基金资助项目(50175029);教育部留学回国人员科研启动基金资助项目([2002]247)。~~
摘 要:随机数学和模糊数学是描述不确定性现象的两种主要数学方法。申农用概率论作为度量信息的数学工具,把信息与不确定性关联起来;但申农熵只是一种概率熵,没有考虑其他型式的不确定性以及信息的含义与价值等。为此,对模糊不确定性的度量、复合熵和全信息作进一步陈述,探讨了信息熵在制造中的应用,并给出两个实例,其中一例是有关不确定切削力的复合熵计算,另一例是基于信息熵的加工过程自适应控制。Probability and fuzzy logic were two main mathematical disciplines to address uncertainty. Shannon used probability as a mathematical tool to measure information, and associated information with uncertainty. Shannon's entropy was just probabilistic entropy, but it didn't take other kinds of uncertainties, meaning and value of information into consideration. So, measures of fuzzy uncertainty, composite entropy and comprehensive information were further described. Applications of information entropy in manufacturing were investigated and two examples were presented, one of which was about the composite entropy calculation for an uncertain cutting force, and the other was on information-entropy-based adaptive control of machining.
分 类 号:O236[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28