检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]DepartmentofMathematics,SichuanUniversity,Chengdu610064,P.R.China [2]DepartmentofMathematicsCentralChina(Huazhong)NormalUniversity,Wuhan430079,P.R.China
出 处:《Acta Mathematica Sinica,English Series》2004年第5期821-828,共8页数学学报(英文版)
基 金:supported by the NSF of China;supported by TRAPOYT and the NSF of China(No.10371046)
摘 要:Let T=(T(t))_(t≥0)be a bounded C-regularized semigroup generated by A on a Banach space X and R(C)be dense in X.We show that if there is a dense subspace Y of X such that for every x ∈ Y,σ_u(A,Cx),the set of all points λ ∈ iR to which(λ-A)^(-1)Cx can not be extended holomorphically,is at most countable and σ_r(A)∩ iR=(?),then T is stable.A stability result for the case of R(C)being non-dense is also given.Our results generalize the work on the stability of strongly continuous semigroups.Let T=(T(t))_(t≥0)be a bounded C-regularized semigroup generated by A on a Banach space X and R(C)be dense in X.We show that if there is a dense subspace Y of X such that for every x ∈ Y,σ_u(A,Cx),the set of all points λ ∈ iR to which(λ-A)^(-1)Cx can not be extended holomorphically,is at most countable and σ_r(A)∩ iR=(?),then T is stable.A stability result for the case of R(C)being non-dense is also given.Our results generalize the work on the stability of strongly continuous semigroups.
关 键 词:C-regularized semigroups Generators STABLE Hille-Yosida space
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229