THE DERIVATIVE ULTRACONVERGENCE FOR QUADRATIC TRIANGULAR FINITE ELEMENTS  被引量:4

在线阅读下载全文

作  者:Qi-dingZhu Ling-xiongMeng 

机构地区:[1]CollegeofMathematicsandComputerScience,HunanNormalUniversity,Changsha410081,China

出  处:《Journal of Computational Mathematics》2004年第6期857-864,共8页计算数学(英文)

摘  要:This work concerns the ultraconvergence of quadratic finite element approximations of elliptic boundary value problems. A new, discrete least-squares patch recovery technique is proposed to post-process the solution derivatives. Such recovered derivatives are shown to possess ultraconvergence. The keys in the proof are the asymptotic expansion of the bilinear form for the interpolation error and a “localized” symmetry argument. Numerical results are presented to confirm the analysis.

分 类 号:O175.2[理学—数学] O241.82[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象