检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京邮电学院信号与信息处理研究所,南京210003
出 处:《信号处理》2004年第6期613-617,共5页Journal of Signal Processing
摘 要:本文在讨论基本L,MS,变步长NLMs【",改进的SVSI。MS[2]和LMS/Fp]组合自适应滤波算法的上基础上提出一种新的可变步长L.MS自适应滤波算法,新算法引入修正系数p和遗忘因子/lf=exl^(-i)(i=l,2,...,M-1),并利用p和^i来产生新的步长参与迭代。计算机仿真结果表明,与基本LMS算法或变步长NL,MS算法、改进的SVSLMS算法、LMS/F组合算法相比,新算法在保持算法简单这一特点的同时进一步加快了收敛速度,并能够收敛到更小且稳定的均方误差(MSE)。This paper discusses about some adapting filtering algorithms of standard LMS, variable step size NLMS, improved SVSLMS and Combined LMS/F. Then we proposed a novel adaptive filtering algorithm with variable step size. The novel algorithm introduces a real scaling factor denoted by P and forgetting factor λi=exp(-i) (i=l,2,...,M-l) to produce the new variable step size μ (n) and use theμ (n) to update the filter coefficients in each iteration. Computer simulations demonstrate that in the scenarios of channel equalization, the proposed algorithm accomplishes faster convergence and steady smaller MSE than the LMS, improved SVSLMS, NLMS and Combined LMS/F algorithms with only a small increase of the computational complexity.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15