检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许毕峰[1] 冯少荣[1] 薛永生[1] 刘笑锋[1] 翁伟[1]
出 处:《计算机科学》2004年第11期93-96,共4页Computer Science
基 金:福建省自然基金(A0310008);福建省高新技术研究开放计划重点项目资助(2003H043)
摘 要:聚类是数据挖掘领域中最活跃的研究分支之一,聚类技术在其他的科学领域也有广泛的应用。迄今为止已经提出了大量的聚类算法,其中基于密度的DBSCAN算法因其很多优点而备受关注,为了减少DBSCAN的区域查询次数,降低I/O开销而提出的改进算法有FDBSCAN、LSNCCP等。随着应用的发展,增量聚类显得越来越重要,而现有的增量聚类算法存在很大的局限性。基于LSNCCP,提出了一种有效的增量聚类算法,同时它也可以用于对LSNCCP进行性能优化。Clustering is one of the most flourish direction of data mining. It has been applied abroad at other scientific fields. Many clustering algorithms have been proposed so far,and the DBSCAN algorithm which was density-based was famous for it's advantages. In order to decrease the amount of regional queries and operations of I/O,some people suggested some advanced algorithms such as FDBSCAN,LSNCCP. With the development of application, incremental clustering algorithm became more important,while the incremental clustering algorithms have been suggested have a lot of limitation. Based on LSNCCP, we propose a new effective incremental clustering algorithm called INCCP, which can be used to improve the efficiency of LSNCCP too.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.194.2