检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江南大学通信和控制工程学院,江苏无锡214122
出 处:《江南大学学报(自然科学版)》2004年第6期575-578,共4页Joural of Jiangnan University (Natural Science Edition)
摘 要:噪声中1/f类分形信号参数β、σ2和σ2w通常用极大似然(ML)法予以估计,然而ML迭代算法极为繁复,且受到谱指数γ范围(γ∈(0,1))的影响,故该方法并不适合于分数布朗运动(FBM)这种分形信号的优良模型,而文中基于小波分析求取了噪声中FBM参数β、σ2和σ2w的估计值.理论分析和实验结果表明,与ML估计相比,该估计算法既简洁且效果良好,而且噪声不局限于高斯分布.The maximum likelihood (ML) estimation is usually used to estimate the parameters of β、σ~2 and σ~2_w of 1/f-type fractal signal embedded in noise. However, the iteration algorithm of the ML estimation is very complicated. The ML estimation is also influenced by the range of the spectral exponent γ(γ∈(0,1)).Therefore, these estimators are not suitable to the parameters of fractional Brownian motions (FBM) as a good model of 1/f-type fractal signal. In this paper, based on wavelet analysis,the estimator of the parameters β,σ~2 and σ~2_w of FBM in noise is introduced. Both theoretical analysis and experimental results demonstrate that the new estimators are much more simple and effective than the ML estimator. The distribution of noise is not restricted within Gauss processes.
分 类 号:TN911.6[电子电信—通信与信息系统] TN911.7[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249