RNA干扰技术在医学遗传学中的应用  被引量:2

The application of RNAi to the medical genetis

在线阅读下载全文

作  者:吴丹[1] 吴白燕[1] 梁红业[1] Nanbert ZHONG 

机构地区:[1]北京大学医学部基础医学院医学遗传系,北京100083

出  处:《北京大学学报(医学版)》2005年第1期106-111,共6页Journal of Peking University:Health Sciences

摘  要:Experimental RNA interference (RNAi) leading to the selective knockdown of gene function is induced by introducing into cells either double stranded RNA (dsRNA), or short interfering RNA (siRNA) fragments into which dsRNA is cut. The siRNA triggers degradation of homologous messengerRNA (mRNA). Widely used as a research tool in the genetic model organisms Caenorhabditis elegans, Drosophila melanogaster and mouse to investigate the function of individual genes, RNAi has also been deployed in genome-wide, specific gene-knockdown screens. Recent rapid progress in the application of RNAi to mammalian cells, including neurons and muscle cells, offers new approaches to drug target identification and validation.Advances in targeted delivery of RNAi-inducing molecules have raised the possibility of using RNAi directly as a therapy for a variety of human genetic and other neural and neuromuscular disorders. Here, we review examples of the application of RNAi to worm, fly and mouse models of such diseases aimed at understanding their pathophysiology.Experimental RNA interference (RNAi) leading to the selective knockdown of gene function is induced by introducing into cells either double stranded RNA (dsRNA), or short interfering RNA (siRNA) fragments into which dsRNA is cut. The siRNA triggers degradation of homologous messengerRNA (mRNA). Widely used as a research tool in the genetic model organisms Caenorhabditis elegans, Drosophila melanogaster and mouse to investigate the function of individual genes, RNAi has also been deployed in genome-wide, specific gene-knockdown screens. Recent rapid progress in the application of RNAi to mammalian cells, including neurons and muscle cells, offers new approaches to drug target identification and validation.Advances in targeted delivery of RNAi-inducing molecules have raised the possibility of using RNAi directly as a therapy for a variety of human genetic and other neural and neuromuscular disorders. Here, we review examples of the application of RNAi to worm, fly and mouse models of such diseases aimed at understanding their pathophysiology.

关 键 词:RNA干扰 动物模型 遗传性疾病 作用机制 

分 类 号:R596[医药卫生—内科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象