检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工程大学船舶与海洋学院,黑龙江哈尔滨150001 [2]黑龙江科技学院基础部,黑龙江哈尔滨150027
出 处:《辽宁工程技术大学学报(自然科学版)》2004年第6期770-772,共3页Journal of Liaoning Technical University (Natural Science)
基 金:黑龙江省自然科学基金资助项目(A01-10)
摘 要:根据非局部线弹性理论研究了剪切模量为指数型的无限大功能梯度材料反平面裂纹问题。利用积分变换和对偶积分方程求解出无限大功能梯度材料反平面裂纹尖端的应力场和位移场,并用Schmidt方法对裂纹尖端的应力场进行了数值求解,与经典理论的解答相反,裂纹尖端应力场的奇异性不存在,裂纹尖端应力幅值随梯度参数的增加而降低。The crack problem in an infinite mediums of functionally graded material (FGM) subjected to antiplane shear is studied by using nonlocal linear elasticity theory. The shear moduli is assumed to be of exponential form, the stress field and displacement field for an infinite mediums of FGM are present at the crack tip by making use of integral transforms and dual integral equations, a set of dual integral equations is solved by using Schmidt’s method. Contrary to the classical elasticity solution, it is found that no stress singularity is present at the crack tip, and the decrease of the stress at the crack tip varies with the increase of graded parameter.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.202.164