检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江南大学控制科学与工程研究中心,无锡214036
出 处:《东南大学学报(自然科学版)》2004年第B11期215-218,共4页Journal of Southeast University:Natural Science Edition
基 金:国家高技术研究发展计划 (863计划 )资助项目 (2 0 0 2AA412 12 0 ) .
摘 要:针对化工领域数据建模小样本、不适定性等问题 ,提出了一种用ε不敏感支持向量回归 (ε SVR)方法进行实际过程建模的想法 ,以解决人工神经网络等方法在数据建模中的“过拟合”、泛化性差等问题 .在分析ε SVR特性的基础上 ,用一个非线性函数逼近例子验证了ε SVR在小样本情况下比BP前馈神经网络具有更优良的建模能力 .将ε SVR应用到丙烯腈聚合反应过程质量指标软测量混合模型中 ,仿真和现场运行结果表明ε SVR是一种非常有效的化工数据建模方法 .Since the size of the sample data is small and the sample is ill-posed in many chemical industry processes, to avoid the problem of overfitting and poor gen eralization capability in conventional data modeling methods (such as back propa gation feedforward neural networks), a new way of support vector machines for da ta modeling is presented. Based on the analysis of ε-insensitive support v ector regression (SVR), including details of the algorithm and its implementatio n, the advantages of ε-SVR were demonstrated through a nonlinear function approximation example where the size of the sample data is small. Furthermore, t he ε-SVR method was successfully applied to a hybrid model for the perform ance figure of polyacrylonitrile productive process, and the simulation results show that the ε-SVR is effective for chemical process data modeling .
关 键 词:ε不敏感支持向量回归 聚丙烯腈 软测量 数据建模
分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117