一种基于扩展Kalman滤波器的神经网络学习算法  被引量:8

Learning algorithm for neural networks based on extended Kalman filter

在线阅读下载全文

作  者:李江 杨慧中 

机构地区:[1]江南大学系统工程研究所,无锡214122

出  处:《东南大学学报(自然科学版)》2004年第B11期230-234,共5页Journal of Southeast University:Natural Science Edition

基  金:国家高技术研究发展计划 (863计划 )资助项目 (2 0 0 2AA412 12 0 )

摘  要:为了解决前馈神经网络BP算法在处理非线性对象时 ,收敛速度慢 ,易陷入局部极值 ,需调节参数多等的缺陷 ,提出将扩展卡尔曼滤波 (EKF)算法引入神经网络的学习中 .把前馈网络的所有权值、阈值作为EKF算法的状态 ,网络输出作为EKF的观测 .同时为了防止滤波发散 ,对算法做了改进 .仿真结果表明 ,该算法比BP算法在收敛速度、抗噪能力方面都有明显提高 。Since back propagation (BP) algorithm is defective in rapidity of convergence an d apt to trap into local extreme value, and it also has too many parameters to b e adjusted when it is applied to nonlinear objects, an extended Kalman filtering (EKF) algorithm is presented and used for training artificial neural networks ( ANN). It regards all the weight values and threshold values as the states, a nd the outputs of the network as the observing values for the Kalman filter in t he feedforward networks. Furthermore, the EKF algorithm is improved to prevent d ivergence. Simulation results show that the EKF algorithm is evidently superior to BP algorithm in the rapidity of convergence, the ability of resisting noise and the ability of generalization.

关 键 词:前馈神经网络 BP算法 扩展Kalman滤波 滤波发散 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象