检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Y.Motohashi T.Shibata S.Harjo T.Sakuma M.Ishihara S.Baba K.Sawa
机构地区:[1]Research Center for Superplasticity, Ibaraki University, Nakanarusawa 4-12-1, Hitachi, Ibaraki 316-8511, Japan [2]Oarai Research Establishment, JAERI, Oarai, Higashiibaraki-gun, Ibaraki 311-1394, Japan
出 处:《材料热处理学报》2004年第05B期1032-1036,共5页Transactions of Materials and Heat Treatment
摘 要:Tetragonal zirconia polycrystals containing 3 mol% yttria (3Y-TZP), which show Superplasticity at high temperatures, were irradiated using 130 MeV Zr+" ions in the TANDEM accelerator facility at Tokai Research Establishment, JAERI. The irradiation induced atomic displacement damage was analyzed by TRIM code. Changes in the mechanical properties and fracture behavior caused by the ion irradiation and the effects of subsequent annealing were studied. The distribution of micro-indentation depth as a function of the indentation position from the irradiated surface to the specimen interior was also examined. The occurrence of compressive residual stresses and increases in hardness and fracture toughness were found in the as-irradiated surface region of the specimen. The subsequent annealing revealed that these quantities were decreased gradually with raising the annealing temperature. Probable causes of the generation of the residual stress and the changes in mechanical properties and fracture mode due to the irradiation are discussed.Tetragonal zirconia polycrystals containing 3 mol% yttria (3Y-TZP), which show Superplasticity at high temperatures, were irradiated using 130 MeV Zr+' ions in the TANDEM accelerator facility at Tokai Research Establishment, JAERI. The irradiation induced atomic displacement damage was analyzed by TRIM code. Changes in the mechanical properties and fracture behavior caused by the ion irradiation and the effects of subsequent annealing were studied. The distribution of micro-indentation depth as a function of the indentation position from the irradiated surface to the specimen interior was also examined. The occurrence of compressive residual stresses and increases in hardness and fracture toughness were found in the as-irradiated surface region of the specimen. The subsequent annealing revealed that these quantities were decreased gradually with raising the annealing temperature. Probable causes of the generation of the residual stress and the changes in mechanical properties and fracture mode due to the irradiation are discussed.
关 键 词:ion beam surface modification ANNEALING 3Y-TZP residual stress mechanical properties MICRO-INDENTATION SUPERPLASTICITY
分 类 号:TG156.2[金属学及工艺—热处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171