检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《同济大学学报(自然科学版)》2005年第2期234-237,共4页Journal of Tongji University:Natural Science
基 金:国家自然科学基金资助项目(10471105)
摘 要:研究从单连通区域Ω R2∪{∞}到一类对称空间———G Grassmann流形Mk(其中包括实Grassmann流形和四 元Grassmann流形)的调和映射,引入了G Grassmann uniton的概念,并通过dressing作用给出了由已知G Grassmann uniton构造新的G Grassmann uniton的方法.证明了任意具有有限uniton数的调和映射φ∶Ω→Mk可因子分解为有限 个G Grassmann uniton的乘积.最后,给出了一种到G Grassmann流形的迷向调和序列的构造方法.The harmonic maps from a simply connected domain ΩR 2∪{∞} into some symmetric spaces M k ,which can be embedded into some real forms G of unitary group U(N) and contain real Grassmann manifolds and Quaternion manifolds,are studied.The G -Grassmann-uniton is introduced and constructed from a known one by the method of the dressing action.It is proved that any harmonic map φ ∶Ω→ M k with finite uniton number can be factorized into a product of a finite number of G -Grassmann-unitons.Finally,a way to construct a sequence of isotropic harmonic maps into G -Grassmann manifold is given.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28