红外目标检测的自适应背景感知算法  被引量:47

Adaptive Background Perception Algorithm for Infrared Target Detection

在线阅读下载全文

作  者:余农[1] 吴常泳[1] 汤心溢[1] 李范鸣[1] 

机构地区:[1]中国科学院上海技术物理研究所

出  处:《电子学报》2005年第2期200-204,共5页Acta Electronica Sinica

基  金:国家自然科学基金 (No .1 0 4 770 1 9)

摘  要:低信噪比检测技术是实现红外自动目标识别的基本前提 ,其性能指标将直接决定系统的探测灵敏度和作用距离 ,是反映红外低可观测目标识别能力至关重要的一项核心技术 .自适应背景估计方法是实现这一目标的有效途径 .本文在重点论述几种常用背景估计方法的基础上 ,提出了形态滤波的优化改进算法 .理论分析和实验测试表明 :该算法简化了形态变换关系 ,优化了结构元构型 ,促进了滤波质量和运算速度的双向提高 ;既保持了形态滤波有效保护信号特性的操作特点 ,又改善了原算法对杂波起伏不够敏感的固有缺陷 ,使其自适应背景感知能力更强 ;算法简洁紧凑 ,操作效率高 ;对复杂背景的低信噪比图像环境表现出良好的滤波性能和稳健的适应能力 .Detecting target with low signal to noise ratio is an fundamental technique used for automatic target recognition (ATR) in infrared imagery, and its performances make an ultimate impact on detection sensitivity and effective distance of a system. It is a leading key technique to indicate the ability of recognizing low-observable target in infrared imagery. Adaptive background estimation method is an efficient avenue to complete this task. On the basis of summarizing several current estimation means, a novel morphological filtering algorithm improved properly is proposed in this paper. Some theoretical analyses and experimental results show that this method is able to simplify operation of morphological conversion and to optimize formation of structuring elements. Consequently it can enhance the filtering result and accelerate the speed of operation as well. Moreover it is capable of preserving the property to protect signal characteristic and improving the inherent limitation not to be sensitive on fluctuation of noise and having better ability of adaptive background perception in morphological filtering algorithm. In conclusion this method is concise and efficient. It can provide good filtering results and robust adaptability to image targets with clutter background.

关 键 词:红外技术 图像分析 目标检测 形态滤波 

分 类 号:TN219[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象