基于多级支持向量机分类器的电力变压器故障识别  被引量:57

Fault Diagnosis of Power Transformer Based on Multi-La yer SVM Classifier

在线阅读下载全文

作  者:吕干云[1] 程浩忠[1] 董立新[1] 翟海保[1] 

机构地区:[1]上海交通大学电气工程系,上海200030

出  处:《电力系统及其自动化学报》2005年第1期19-22,52,共5页Proceedings of the CSU-EPSA

基  金:高等学校优秀青年教师教学科研奖励计划资助项目

摘  要:支持向量机是以统计学习理论为基础发展起来的新的通用学习方法 ,较好地解决了小样本、高维数、非线性等学习问题。提出了一种基于多级支持向量机分类器的电力变压器故障识别方法。该方法首先通过特殊数值处理过程 ,对色谱分析法检测到的特征气体含量进行数值预处理 ,提取出故障识别所需要的 6个特征量 ,然后利用数值预处理后得到的数据样本分别对三级支持向量机进行训练和识别 ,并最后判断输出变压器所处的状态。测试结果表明 ,该方法具有三个优点 :1 )具有较强的鲁棒性 ,识别正确率极高 ;2 )训练时间很短 ,实时性能好 ;3 )不存在局部极小问题。Support Vector Machine (SVMs) is a novel machine learning method based on statis tical learning theory (SLT). SVM is powerful for the problem with small sample, nonlinear and high dimension. A multi-layer SVM classifier is applied here to f ault diagnosis of power transformer. Through a special data dealing process, con tents of five characteristic gases obtained by DGA are transformed, and 6 charac teristic components for fault diagnosis are distilled for SVMs. The multi-layer SVM classifier, trained with the sampling data from the above dealing process, identifies out the four types of transformer states. The test results show that the proposed classifier has an excellent performance on training speed and corre ct ratio.

关 键 词:故障识别 多级支持向量机 分类器 电力变压器 

分 类 号:TM762[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象