检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吕干云[1] 程浩忠[1] 董立新[1] 翟海保[1]
出 处:《电力系统及其自动化学报》2005年第1期19-22,52,共5页Proceedings of the CSU-EPSA
基 金:高等学校优秀青年教师教学科研奖励计划资助项目
摘 要:支持向量机是以统计学习理论为基础发展起来的新的通用学习方法 ,较好地解决了小样本、高维数、非线性等学习问题。提出了一种基于多级支持向量机分类器的电力变压器故障识别方法。该方法首先通过特殊数值处理过程 ,对色谱分析法检测到的特征气体含量进行数值预处理 ,提取出故障识别所需要的 6个特征量 ,然后利用数值预处理后得到的数据样本分别对三级支持向量机进行训练和识别 ,并最后判断输出变压器所处的状态。测试结果表明 ,该方法具有三个优点 :1 )具有较强的鲁棒性 ,识别正确率极高 ;2 )训练时间很短 ,实时性能好 ;3 )不存在局部极小问题。Support Vector Machine (SVMs) is a novel machine learning method based on statis tical learning theory (SLT). SVM is powerful for the problem with small sample, nonlinear and high dimension. A multi-layer SVM classifier is applied here to f ault diagnosis of power transformer. Through a special data dealing process, con tents of five characteristic gases obtained by DGA are transformed, and 6 charac teristic components for fault diagnosis are distilled for SVMs. The multi-layer SVM classifier, trained with the sampling data from the above dealing process, identifies out the four types of transformer states. The test results show that the proposed classifier has an excellent performance on training speed and corre ct ratio.
分 类 号:TM762[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28