检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘蓉[1] 陈文亮[1] 徐可欣[1] 邱庆军[1] 崔厚欣[1]
机构地区:[1]天津大学精密测试技术及仪器国家重点实验室,天津大学精密仪器与光电子工程学院,天津300072
出 处:《光谱学与光谱分析》2005年第2期207-210,共4页Spectroscopy and Spectral Analysis
基 金:国家自然科学基金项目(30170261); 天津市自然科学重点基金项目(023800411)资助
摘 要:近红外光谱作为一种依靠模型对物化性质进行分析的技术,对光谱数据的准确性进行快速准确的判断是得到可靠分析结果的前提。但是光谱数据中奇异点的存在会在很大程度上影响多变量校正模型的准确性,从而影响模型的预测效果。文章综合利用半数重采样法(ResamplingbyHalfMean,RHM)和最小半球体积法(SmallestHalfVolume,SHV)成功剔除了被测量的牛奶成分近红外光谱中的奇异点,其效果远优于传统的奇异点剔除方法,并且该方法具有简单快速、计算量小、数值稳定等特点,非常适用于在线分析和其他类型的光谱数据中奇异点的检测。Near-infrared spectroscopy is a fast and efficient analytical technique based on multivariate calibration model, which correlates near-infrared spectra with the property of samples (such as concentration). The reliability of analytical results depends mostly on the accuracy of measured spectra. But outliers do not make for reliable data. The authors combined RHM (Resampling by Half-Means) with SHV (Smallest Half-Volume) method to detect the outliers of the near-infrared spectra of milk samples, and the results were satisfactory. The performance of the new method is superior to the traditional outliers detecting algorithms such as Mahalanobis distances and hat matrix leverage. And this combined method is simple and fast to use, conceptually clear, and numerically stable, so it is recommended to be used for the detection of multiple outliers in multivariate data, especially the online measurement and discriminant analysis.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.67.245