检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程与应用》2005年第7期51-53,共3页Computer Engineering and Applications
基 金:国家863高技术研究发展计划项目资助(编号:2001AA115190-08)
摘 要:在数字曲线拟合的各种方法中,常见的用作拟合基元的曲线有B样条、贝塞尔曲线等。与这些曲线相比,二次多项式曲线具有形式简单、计算方便等特点。但二次多项式只能拟合X坐标与Y坐标之间成函数关系的点序列,无法拟合闭合曲线。因此,论文提出了一种基于曲线分解的拟合方法,该方法首先将闭合曲线在X方向和Y方向上进行分解,得到两个一维离散函数,然后用二次多项式分别对这两个离散函数进行递归拟合,直到满足一定的精度要求为止。最后实验表明,该方法与现有拟合算法相比,具有精度高、计算量小等特点。There are many common base curves used in the method of curve-fitting,such as B_spline curve and Bezier curve etc.Quadratic curve is simpler in form and calculating compared with these curves.But the quadratic curve can be used only in condition when each X-coordinate of the points sequence mapping to only one Y-coordinate,so it can't be used in fitting closing curve.This article presents a fitting method based on separating the curve.This method separates the closing curve in X direction and Y direction to get two digital functions of one dimension,then quadratic curve can be used to fit this two digital curves recursively until a certain precision is gotten.The experiment in the last part of this paper shows that this method is not only easier to calculate but also has a higher precision than others.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.173