检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]陕西师范大学数学与信息科学学院,副教授,西安,710062 [2]清华大学数学科学系,硕士,清华,100084
出 处:《陕西师范大学继续教育学报》2005年第1期108-110,共3页Journal of Further Education of Shaanxi Normal University
摘 要:本文讨论了∫+∞af(x)dx收敛与limx→+∞f(x)=0的关系.首先举出反例说明,一般情况下∫+∞af(x)dx收敛不能推出limx→+∞f(x)=0;其次得到∫+∞af(x)dx收敛可以保证至少存在一列{xn}∞n=1(xn→+∞当n→+∞时),使得limx→+∞f(xn)=0成立;最后证明了如果f(x)一致连续、或单调、或∫+∞af′(x)dx收敛,那么只要∫+∞af(x)dx收敛,就有limx→+∞f(x)=0.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15