检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《北京师范大学学报(自然科学版)》2005年第1期54-57,共4页Journal of Beijing Normal University(Natural Science)
基 金:国家自然科学基金资助项目(10473002;10373004);北京师范大学青年基金资助项目(1077002);北京师范大学本科生研究基金资助项目(127002)
摘 要:研究N体问题共线解的数值方法.依照动力学和运动学原理,建立N体问题共线解所满足的条件方程,把解 微分方程组的问题转化为解非线性方程组的问题.当质量已知时,对条件方程组进行Taylor级数展开,使非线性方程组 转化为线性方程组,然后用牛顿迭代法解此方程组从而获得共线解.如果给定N体问题共线解中各质点之间的距离,那 么问题就变成求解满足这组给定轨道的质点的质量问题,此时的条件方程就是线性方程组,解此线性方程组就可以得到 答案.The numerical methods of solving the collinear N-body problem are studied in detail. By the Newton's dynamic principle and the constraint equations that the collinear N-body systems satisfy, the problem of solving the set of differential equations is transformed into that of solving the nonlinear set of equations. Given mass of each object in N-body system, the nonlinear set of equations reduces to linear one by the Taylor series expansion of the constraint equation, and its collinear is obtained by Newtonian iteration. On the other hand, given the distance between any two masses, the problem we seek becomes that of finding the masses of N-body system. In this case, the constraint equations is naturally linear set of equations, which gives the masses of N-body system. A serious of numerical solutions to the collinear N-body problem are presented for both cases above.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145