EFFECTS OF CARBOXYMETHLY DEXTRAN MAGNETIC NANOPARTICLES CARRIER SYSTEM ASSOCIATED WITH EXTERNAL MAGNETIC FIELDS ON KILLING TUMOR CELLS AND GENE TRANSFECTION  

EFFECTS OF CARBOXYMETHLY DEXTRAN MAGNETIC NANOPARTICLES CARRIER SYSTEM ASSOCIATED WITH EXTERNAL MAGNETIC FIELDS ON KILLING TUMOR CELLS AND GENE TRANSFECTION

在线阅读下载全文

作  者:曹正国 周四维 刘继红 

机构地区:[1]Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030

出  处:《Chinese Journal of Cancer Research》2005年第1期1-5,共5页中国癌症研究(英文版)

基  金:This work was supported by the NationalNatural Science Foundation of China(No.30271300)

摘  要:Objective: To investigate the preparation of the carboxymethly dextran iron oxide magnetic nanoparticles (CDMN) and the effects of CDMN carrier system associated with external magnetic fields on killing tumor cells and gene transfection in vitro. Methods: Epirubicin-CDMN (EPI-CDMN) and green fluorescent protein (GFP) plasmid-CDMN (GFP-CDMN) were prepared by the oxidation-reduction procedure and their characters were detected, respectively. The effects of EPI-CDMN associated with external pulsed electromagnetic fields (PEMFs) (10 mT) on killing human bladder cancer BIU-87 cells were studied by MTT assay and Annexin-V/PI double-labeled flow cytometry technique, respectively. And the transfection efficiency of GFP when CDMN were used as gene carrier associated with the external magnetic fields was evaluated under fluorescence microscope in vitro. Results: The diameter of EPI-CDMN and GFP-CDMN were about 8~10 nm and 5~9 nm, respectively, and saturation magnetization were 0.22 emu/g and 0.26 emu/g, respectively. EPI-CDMN associated with PEMFs could significantly inhibit the proliferation of BIU-87 cells and induce cells apoptosis, the growth inhibitory rate and apoptosis rate were (21.82±3.18)% and (16.79±3.37)%, respectively. The transfection efficiency of GFP-CDMN combined with PEMFs was significant higher than that of GFP-CDMN without PEMFs [(45.70±4.32)% vs (35.85±2.16)%, P<0.05]. Conclusion: It seemed that EPI-CDMN associated with external magnetic fields could significantly killed human bladder cancer BIU-87 cells and CDMN could effectively transfer GFP gene into tumors cells with the help of external magnetic fields which provided experimental basis for the magnetic targeting therapy of tumor.Objective: To investigate the preparation of the carboxymethly dextran iron oxide magnetic nanoparticles (CDMN) and the effects of CDMN carrier system associated with external magnetic fields on killing tumor cells and gene transfection in vitro. Methods: Epirubicin-CDMN (EPI-CDMN) and green fluorescent protein (GFP) plasmid-CDMN (GFP-CDMN) were prepared by the oxidation-reduction procedure and their characters were detected, respectively. The effects of EPI-CDMN associated with external pulsed electromagnetic fields (PEMFs) (10 mT) on killing human bladder cancer BIU-87 cells were studied by MTT assay and Annexin-V/PI double-labeled flow cytometry technique, respectively. And the transfection efficiency of GFP when CDMN were used as gene carrier associated with the external magnetic fields was evaluated under fluorescence microscope in vitro. Results: The diameter of EPI-CDMN and GFP-CDMN were about 8~10 nm and 5~9 nm, respectively, and saturation magnetization were 0.22 emu/g and 0.26 emu/g, respectively. EPI-CDMN associated with PEMFs could significantly inhibit the proliferation of BIU-87 cells and induce cells apoptosis, the growth inhibitory rate and apoptosis rate were (21.82±3.18)% and (16.79±3.37)%, respectively. The transfection efficiency of GFP-CDMN combined with PEMFs was significant higher than that of GFP-CDMN without PEMFs [(45.70±4.32)% vs (35.85±2.16)%, P<0.05]. Conclusion: It seemed that EPI-CDMN associated with external magnetic fields could significantly killed human bladder cancer BIU-87 cells and CDMN could effectively transfer GFP gene into tumors cells with the help of external magnetic fields which provided experimental basis for the magnetic targeting therapy of tumor.

关 键 词:Magnetic fields Nanoparticles Bladder tumor Gene transfection 

分 类 号:R73-3[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象