检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]四川理工学院计算机科学系,四川自贡643033 [2]电子科技大学自动化学院,四川成都610054
出 处:《计算机仿真》2005年第3期114-116,129,共4页Computer Simulation
摘 要:模糊C-均值(FCM)算法具有对样本集进行等划分趋势的缺陷,对于团状、每类样本数相差较大的数据集, FCM算法的最优解可能不是数据集的正确划分,基于以上原因,以少量的先验知识作为部分监督信息,再利用样本点分布密度大小作为权值,提出了一种新的部分监督加权模糊C-均值(PSWFCM)算法,并且该算法的加权系数的计算和点密度范围限定值的选取都具有客观性。仿真结果证明,PSWFCM算法不仅在一定程度上克服了FCM算法的缺陷,而且具有良好的收敛性和鲁棒性,聚类效果也有较好的改善。Based on fuzzy C-means (FCM) algorithm having limitation of equal partition trend for data sets, optimum clustering result of FCM algorithm might be not valid for demarcation of data sets haivng mass shape and large discrepancy of every class specimen number. A new partial supervised and weighted fuzzy C-means (PSWFCM) algorithm has been proposed in view of above-mentioned reasons, in which a little known knowledge is regarded as partial supervised information, distributing density size of data dot is regarded as weighted value, and calculation of weighted coefficient and choice of spot density range restriction value are objective. The simulation result proves that the algorithm has not only to certain extent overcome the limitation of FCM algorithm, but also has favorable convergence and robustness, and the clustering effect has been obviously improved.
分 类 号:P641[天文地球—地质矿产勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.10.46