基于人工神经网络的电涡流逆问题解  被引量:7

The Eddy Current Inversion Based on Artificial Neural Networks

在线阅读下载全文

作  者:肖春生[1] 王树宗[1] 朱华兵[1] 

机构地区:[1]海军工程大学,武汉430033

出  处:《无损检测》2005年第4期172-175,共4页Nondestructive Testing

摘  要:在涡流检测中,常利用最小方差法来进行缺陷重构,这种方法要求正问题的求解效率高。提出一种新的求解正问题方法,该方法利用人工神经网络来估计涡流检测信号,大大提高缺陷重构效率。通过对理想裂纹数值验证显示,该方法可以用数值计算方法得到学习样本对人工神经网络进行训练,并且人工神经网络在学习过程中对噪声不敏感,因而可以有效抑制噪声。The general eddy current flaw reconstruction strategy was the least-square error method, which required the forward solver having high speed. A novel technique was presented for forward problem to rapidly predict eddy current signals by utilizing artificial neural networks, which could enhance the efficiency of flaw reconstruction. After the numerical analysis of ideal cracks, it was found that the artificial neural network training could only use the data gained by some numerical calculation method, and the artificial neural network training was not sensitive to the noise, so this technique has the ability of restrain the noise.

关 键 词:涡流检测 缺陷重构 人工神经网络 

分 类 号:TG115.28[金属学及工艺—物理冶金]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象