小波变换基神经网络故障诊断系统及其应用  被引量:6

Wavelet Transform Base Neural Network Fault Diagnosis System and Its Application

在线阅读下载全文

作  者:任伟建[1] 刘铁男[1] 赵永玲[1] 张正刚[1] 

机构地区:[1]大庆石油学院电气信息工程学院,黑龙江大庆163318

出  处:《系统仿真学报》2005年第4期844-845,896,共3页Journal of System Simulation

基  金:黑龙江省自然科学基金资助项目(A01-14);黑龙江省骨干教师资助项目(1053G002)。

摘  要:针对油田抽油机井故障诊断方法较落后和故障信息采集不充分的问题,提出一种小波变换基神经网络故障诊断系统。它先对输入信号进行离散小波变换,把由Mallat算法得到的多尺度下的离散细节信号作为故障特征,之后将其输入到神经网络进行故障模式分类。为了进一步提高诊断的正确率,一方面对神经网络的结构进行优化,另一方面采用学习率自适应调整的共轭梯度法训练神经网络的权值。对某油田32口故障油井进行诊断,正确率在95%以上,这表明该方法的有效性。Aiming at the questions of pump-jack fault diagnosis method backward and diagnosis information lack of, it is proposed a kind of wavelet transform based neural network fault diagnosis system. The system first performs discrete wavelet transform for input signals and treats the multi-scale discrete detail signals achieved by Mallat arithmetic as fault characters. Then the transformed signals are sent to the neural network to classify the fault modes. In order to raise the correct rate of fault diagnosis, on one hand the structure of the neural network is optimized, and on the other hand conjugated gradient method is used with learning rate self-adjusting to train the network weight values. In the practice, the system is used to diagnose up to 32 fault pump-jacks, and the correct rate of diagnosis is above 95%. The results show that the proposed scheme is very effective.

关 键 词:小波变换 神经网络 故障诊断 抽油机井 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] TP206.3[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象