Strong Converse Inequality for Left Gamma Quasi-Interpolants  被引量:2

Strong Converse Inequality for Left Gamma Quasi-Interpolants

在线阅读下载全文

作  者:Qiu-lanQi Shun-shengGuo 

机构地区:[1]CollegeofMathematicsandInformationScience,HebeiNormalUniversity,Shijiazhuang050016,China

出  处:《Acta Mathematicae Applicatae Sinica》2005年第1期115-124,共10页应用数学学报(英文版)

基  金:Supported by the Hebei Provincial Science Foundation of China (A2004000137);Doctoral Research Fund of Hebei Normal University (L2002B03)

摘  要:Abstract The rate of convergence for the Gamma operators cannot be faster than $$O{\left( {\frac{1}{n}} \right)}$$. In order to obtain much faster convergence, quasi-interpolants in the sense of Sablonnière are considered. For the first time in the theory of quasi-interpolants, the strong converse inequality is solved in sup-norm with the K-functional $$K^{\alpha }_{\lambda } {\left( {f,t^{{2r}} } \right)}\;{\left( {0 \leqslant \lambda \leqslant 1,\;0Abstract The rate of convergence for the Gamma operators cannot be faster than $$O{\left( {\frac{1}{n}} \right)}$$. In order to obtain much faster convergence, quasi-interpolants in the sense of Sablonnière are considered. For the first time in the theory of quasi-interpolants, the strong converse inequality is solved in sup-norm with the K-functional $$K^{\alpha }_{\lambda } {\left( {f,t^{{2r}} } \right)}\;{\left( {0 \leqslant \lambda \leqslant 1,\;0

关 键 词:gamma quasi-interpolant strong converse inequality K-FUNCTIONAL 

分 类 号:O177[理学—数学] O178[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象