检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周志明[1] 程振民[1] 李卓[1] 袁渭康[1]
机构地区:[1]华东理工大学反应工程国家重点实验室,上海200237
出 处:《化工学报》2005年第4期637-641,共5页CIESC Journal
基 金:国家自然科学基金项目 (20106005);中国石化总公司项目 (201085)~~
摘 要:The global reaction rate of benzene hydrogenation to cyclohexane accompanied by partial internal wetting of catalyst pellets was measured by a new method, which investigated both adsorption and chemical reaction.The adsorption investigation was used to establish a relationship between the extent of liquid filling of the catalyst and the bulk conditions while the chemical reaction investigation was to study the effect of partial internal wetting of the catalyst on the global reaction rate.It was shown that the extent of liquid filling in the catalyst interior showed a significant effect on the global rate, and the current state of the catalyst depended on the history, i.e. whether it was a liquid evaporation process or a vapor condensation process, and two steady states were found under certain circumstances.A mathematical model was developed, which took multicomponent diffusion, chemical reaction, pore size distribution of the catalyst and capillary condensation of condensable components in the catalyst pellet into consideration.The predicted values were in good agreement with the experimental data.The global reaction rate of benzene hydrogenation to cyclohexane accompanied by partial internal wetting of catalyst pellets was measured by a new method, which investigated both adsorption and chemical reaction. The adsorption investigation was used to establish a relationship between the extent of liquid filling of the catalyst and the bulk conditions while the chemical reaction investigation was to study the effect of partial internal wetting of the catalyst on the global reaction rate. It was shown that the extent of liquid filling in the catalyst interior showed a significant effect on the global rate, and the current state of the catalyst depended on the history, i.e. whether it was a liquid evaporation process or a vapor condensation process, and two steady states were found under certain circumstances. A mathematical model was developed, which took multicomponent diffusion, chemical reaction, pore size distribution of the catalyst and capillary condensation of condensable components in the catalyst pellet into consideration. The predicted values were in good agreement with the experimental data.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.167.59