检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]空军工程大学电讯工程学院,陕西西安710077
出 处:《空军工程大学学报(自然科学版)》2005年第2期79-82,共4页Journal of Air Force Engineering University(Natural Science Edition)
摘 要:提出了一种基于DCT提取人脸特征技术和支持向量机分类模型的人脸识别方法。利用离散余弦变换可提取人脸可识别的大部分信息,而支持向量机作为分类器,在处理小样本、高维数等方面具有独特的优势,且泛化能力很强,无需先验知识。从ORL人脸库上的实验结果可以看出,DCT特征提取是很有效的,且SVM的分类性能优于最近邻分类器,同时提高了整个系统的运算速度。A new algorithm is presented for face recognition based on DCT and a multi-class support vector machine (SVM) model. The extracted features from human face images by DCT have major information that can be recognized. As a classifier, the SVM has its particular advantage in tackling small sample size, high dimension and etc., and is of high generalization and without need of priori knowledge. The results on ORL face database show that the DCT feature extraction method is effective and the SVM is superior to the nearest neighbor classifier in classification performance with the efficiency of the whole system improved.
分 类 号:TN959.17[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28