检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《黑龙江科技学院学报》2005年第3期182-184,共3页Journal of Heilongjiang Institute of Science and Technology
基 金:黑龙江省自然科学基金资助项目(A01-10);黑龙江省教育厅基金项目(10551269)
摘 要:假设剪切模量沿厚度方向连续且为指数形式模型,研究了含有限长裂纹的无限长条功能梯度材料在反平面剪应力荷载作用下的裂纹问题。利用非局部线弹性理论和积分变换方法,将混合边界值问题简化为对偶积分方程,最后通过Schmidt方法对裂纹尖端的应力场和位移场进行了求解。结论表明,经典理论中的应力奇异性消失,在远离裂纹尖端的条件下的非局部解答和经典解答是一致的。A finite crack in an infinite strip of functionally graded material (FGM) under anti-plane shear loading is analyzed. It is assumed that the shear moduli varies continuously in the thickness direction and is to be of exponential form. The mixed boundary value problem is reduced to a dual integral equation by means of nonlocal linear elasticity theory and integral transform method. The stress field and displacement field near the tip of a crack for an infinite strip of FGM are solved by using Schmidt's method. The conclusion shows that the singularity of the solution of classical theory does not exist, and the solution of nonlocal theory accords with that of classical theory far from the tip of a crack.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249