基于人工神经网络和模拟进化算法的分级燃烧优化  被引量:7

Staged combustion optimization based on artificial neural network and simulation evolvement algorithm

在线阅读下载全文

作  者:程伟良[1] 夏国栋[2] 徐寿臣[3] 周茵[1] 

机构地区:[1]华北电力大学动力工程系,北京102206 [2]北京工业大学环境与能源工程学院,北京100022 [3]国家电网公司高级培训中心,北京100085

出  处:《清华大学学报(自然科学版)》2005年第5期693-696,共4页Journal of Tsinghua University(Science and Technology)

基  金:国家"九七三"重点基础研究项目(20000263)

摘  要:为控制锅炉燃烧向环境排放NOx造成的污染,提出了分级燃烧技术的综合优化方案。建立了基于人工神经网络及模拟进化算法的100MW火电机组锅炉分级燃烧优化模型,选取16个影响因子进行了分级燃烧的7个可调节参数优化,以达到机组的性能优化目标。锅炉负荷为100%、90%、80%及70%,相应神经网络训练次数分别为11523、14810、13410及19732时满足均方差要求。该神经网络模型优化时采用的种群数为80,交叉概率为0.8,变异概率为0.15。结果表明:锅炉效率和NOx排放量优化计算值同实测值相对误差低于1%;NOx平均排放量由原来的812mg/m3降为645mg/m3。The staged-combustion burner design was optimized to reduce the environmental pollution due to NO_x emitted by the boiler combustion. The staged-combustion model was based on artificial neural network and simulation evolvement algorithm for a boiler with a 100 MW turbine-generation unit. The boiler performance was optimized for 16 design parameters and 7 regulating parameters that affect the combustion. The analysis considered boiler loads of 100%, 90%, 80% and 70% which required 11 523, 14 810, 13 410 and 19 732 neural network training steps for the training values to meet the mean square deviation requirement. The optimized design gave a species amount of 80, a cross probability of 0.8, and a variation probability of 0.15. The results show that the relative errors in the boiler efficiencies and NO_x emissions between the calculated and measured results are less than 1%, and that the average NO_x output of the boiler decreases from 812 mg/m^3 to 645 mg/m^3.

关 键 词:锅炉 分级燃烧优化 人工神经网络 模拟进化算法 

分 类 号:TK22[动力工程及工程热物理—动力机械及工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象