RBF神经网络最优分割算法及其在股市预测中的应用  被引量:1

An Optimal Partition Algorithm of RBF Neural Network and Its Applications to Stock Price Prediction

在线阅读下载全文

作  者:孙延风[1] 梁艳春[1] 张文力[2] 吕英华[3] 

机构地区:[1]吉林大学计算机科学与技术学院国家教育部符号计算与知识工程重点实验室,长春130012 [2]中国科学院计算技术研究所,北京100080 [3]东北师范大学计算机科学系,长春30024

出  处:《模式识别与人工智能》2005年第3期374-379,共6页Pattern Recognition and Artificial Intelligence

基  金:国家自然科学基金(No.60433020);高等学校博士学科点专项科研基金(No.20030183060);吉林省科技发展计划(No.20030520);教育部科学技术研究(No.02090)资助项目

摘  要:将最优分割算法(optimal partition algorithm,OPA)用于径向基函数神经网络参数的训练中.对OPA进行了适当的改进,在改进的OPA中增加了类的中心与宽度的确定方法,并将它们用于确定RBF网络的中心与宽度,提出了利用类的目标函数的差分对网络结构进行动态调整的方法,从而实现了隐节点数的自适应选择。用于股价预测的数值模拟结果验证了该方法的有效性。与传统算法进行比较的结果表明,在预测方面OPA具有较明显的优势,将OPA算法与正交最小二乘法相结合的OPA-OLS算法可以提高趋势预测的正确率。The optimal partition algorithm (OPA) is applied to the training of parameters in the radial basis function (RBF) neural network. The appropriate modification for the OPA is performed according to the characteristics of the RBF neural network. The approach for determining the centers and widths of the clustering is added in the modified OPA and applied to choose the centers and widths of the neural network. A method for adjusting the structure of the neural network dynamically is presented by using the difference of the objective functions of the clustering. Thus it is realized to select the number of the hidden nodes adaptively. Simulation results of the stock price prediction demonstrate the effectiveness of the proposed approach. Comparisons with traditional algorithms show that the proposed OPA method possesses obvious advantages in the precision of forecasting, generalization, and forecasting trends. Simulations also show that the algorithm combining the OPA with the orthogonal least squares (OLS) possesses more superior performance in the rightness of forecasting trends.

关 键 词:最优分割算法 有序样本 RBF神经网络 股票价格预测 

分 类 号:F830.91[经济管理—金融学] F224

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象