基于人工智能的大电机主绝缘老化状态评估软件  被引量:14

Evaluating Software for Aging Condition of Main Insulation Based on Artificial Intelligence Technology

在线阅读下载全文

作  者:乐波[1] 成永红[2] 陈小林[2] 谢恒堃[2] 

机构地区:[1]清华大学深圳研究生院能源与电工新技术实验室 [2]西安交通大学电力设备电气绝缘国家重点实验室,陕西省西安市710049

出  处:《电力系统自动化》2005年第14期78-82,共5页Automation of Electric Power Systems

基  金:国家自然科学基金重点资助项目(59837260)中国博士后基金资助项目(2004035041)西安交通大学电力设备电气绝缘国家重点实验室开放基金资助项目。

摘  要:为了更有效地评估大电机主绝缘的老化状态,提出了应用神经网络和模糊数学相结合的人工智能技术评估绝缘老化状态的新方法。首先,建立具有模糊输出的3层反向传播(BP)神经网络,并确定绝缘状态论域上的4个模糊子集及其隶属函数,同时规定了模糊输出神经网络的输入和输出参量;然后,选择Levenberg-Marquardt快速学习算法对建立的模糊输出神经网络进行训练,并使用真机线棒数据对网络的评估效果进行检验;最后,基于MATLAB开发了大电机主绝缘老化状态智能评估软件。研究结果表明该软件可以准确有效地评估定子绝缘的老化状态。The condition assessment of large generator main insulation is an important research subject in electrical engineering field, and the key destination is to assess the aging condition of insulation based on the nondestructive parameters. A new artificial intelligent assessment method based on the combination of fuzzy math theory and artificial neutral network (ANN) is proposed in order to overcome the disadvantages of traditional insulation condition assessment based on the threshold model. Firstly, the 3 layers of BP ANN are established with 4 fuzzy outputs, which are the degrees of membership to four fuzzy subsets of insulation condition respectively, and 28 inputs corresponding to 28 nondestructive parameters of insulation respectively. Secondly, the ANN with fuzzy outputs is trained by the Levenberg-Marquardt fast training algorithm with the goal error of 0.0001, and the ability of condition evaluation of the network is verified by five 18 kV/300 MW practical stator bars. Finally, the intelligent evaluating software of main insulation based on MATLAB is developed. The research results show that the technique could assess the aging condition of stator bar insulation effectively and accurately.

关 键 词:绝缘状态评估 模糊数学 神经网络 人工智能 

分 类 号:TM307[电气工程—电机]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象