检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学化学系,北京100084
出 处:《分析化学》1995年第10期1172-1175,共4页Chinese Journal of Analytical Chemistry
基 金:国家自然科学基金资助项目
摘 要:本文将迭代目标转换因子分析与人工神经网络法用于分光光度法同时测定邻、间、对硝基甲苯,并与目标转换因子分析的结果进行了比较.结果表明,迭代目标转换因子分析法与线性网络法的效果都很好.其相对误差分别为1.3%和1.2%,而目标转换因子分析法的预测误差较大,其相对误差为10.4%.Iterative target transformation factor analysis (ITTFA) and artificial neural network (ANN) are used to determine o-, m-, p-nitromethylbenzene simultaneously with spec-trophotometry. After compared the results obtained from these two methods above mentioned with those from target transformation factor analysis, it shows that satisfied prediction precision could be obtained by ITTFA and ANN methods. The average relative errors of ITTFA and ANN are 1. 3% and 1. 2% respectively while target transformation factor analysis is 10. 4%. It also shows that the satisfied results can be obtained by artificial neural network when 3 layers network (L=3) and 10 neurons in each hidden layer(N=10) are adopted.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222