检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江南大学生物工程学院生物信息学研究室,江苏无锡214036 [2]江南大学工业生物技术教育部重点实验室 [3]江南大学信息工程学院,江苏无锡214036
出 处:《计算机与应用化学》2005年第6期459-465,共7页Computers and Applied Chemistry
摘 要:支持向量机有许多优点:有效防止过拟和,适合大的特征空间,给定数据集的信息压缩。本文首次利用支持向量机从氨基酸组成来预测蛋白质的稳定性。总预测率可以达到80.64%,对嗜热蛋白质的预测率为82.50%,对嗜温蛋白质的预测率为80.29%从预测率可以验证氨基酸组成与蛋白质热稳定性成正相关的关系,支持向量机可以成为基于氨基酸组成预测蛋白质热稳定性的有效工具。Support vector machines have many attractive features, such as effective avoidance of overfitting, the ability to handle large feature spaces, information condensing of the given data set. We firstly use ν-support vector machines to predict protein thermostability from amino acid composition. The total prediction accuracy reaches 80. 64% , the prediction accuracy of thermophilic proteins is 82. 50% , and the prediction accuracy of mesophilic proteins is 80. 29% . From the prediction accuracy, we can conclude that amino acid composition is correlative significantly to protein thermostability, and we regard support vector machines would become a powerful tool for predicting protein thermostability from amino acid composition.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.88