机构地区:[1]Department of Physiology, Medical School, Zhengzhou University, Zhengzhou 450052, Henan Province, China [2]Epithelial Cell Biology Research Center, Department of Physiology,Faculty of Medicine, The Chinese University of Hong Kong, Shatin,Hong Kong, China
出 处:《World Journal of Gastroenterology》2005年第27期4173-4179,共7页世界胃肠病学杂志(英文版)
基 金:Supported by the Innovation and Technology Fund of Hong Kong, China
摘 要:AIM: To investigate the effect of tetramethylpyrazine (TMP), an active compound from Ligustium Wollichii Franchat, on electrolyte transport across the distal colon of rodents and the mechanism involved.METHODS: The short-circuit current (Isc) technique in conjunction with pharmacological agents and specific inhibitors were used in analyzing the electrolyte transport across the distal colon of rodents. The underlying cellular signaling mechanism was investigated by radioimmunoassay analysis (RIA) and a special mouse model of cystic fibrosis.RESULTS: IMP stimulated a conoentration-dependent rise in ISCl, which was dependent on both Cl^- and HCO3^-, and inhibited by apical application of diphenylamine-2,2'-dicarboxylic acid (DPC) and glibenclamide, but resistant to 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid disodium salt hydrate (DIDS). Removal of Na^+ from basolateral solution almost completely abolished the Isc response to TMP, but it was insensitive to apical Na^+ replacement or apical Na^+ channel blocker, amiloride. Pretreatment of colonic mucosa with BAPTA-AM, a membrane-permeable selective Ca2+ chelator, did not significantly alter the TMP-induced Iso No additive effect of forskolin and 3-isobutyl-l-methylxanthine ([BMX) was observed on the TMP-induced Isc, but it was significantly reduced by a protein kinase A inhibitor, H89.RIA results showed that TMP (1 mmol/L) elicited a significant increase in cellular cAMP production, which was similar to that elicited by the adenylate cyclase activator, forskolin (10μmol/L). The TMP-elicited Isc as well as forskolin- or IBMX-induced Isc were abolished in mice with homozygous mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) presenting defective CFTR functions and secretions.CONCLUSION: TMP may stimulate cAMP-dependent and CFTR-mediated Cl^- and HCO3^- secretion. This may have implications in the future development of alternative treatment for constipation.AIM: To investigate the effect of tetramethylpyrazine (TMP), an active compound from Ligustiun Wollichii Franchat, on electrolyte transport across the distal colon of rodents and the mechanism involved.METHODS: The short-circuit current (ISC) technique in conjunction with pharmacological agents and specific inhibitors were used in analyzing the electrolyte transport across the distal colon of rodents. The underlying cellular signaling mechanism was investigated by radioimmunoassay analysis (RIA) and a special mouse model of cystic fibrosis.RESULTS: TMP stimulated a concentration-dependent rise in ISC, which was dependent on both Cl- and HCO3-, and inhibited by apical application of diphenylamine-2,2'-dicarboxylic acid (DPC) and glibenclamide, but resistant to 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid disodium salt hydrate (DIDS). Removal of Na+ from basolateral solution almost completely abolished the ISC response to TMP, but it was insensitive to apical Na+ replacement or apical Na+channel blocker, amiloride. Pretreatment of colonic mucosa with BAPTA-AM, a membrane-permeable selective Ca2+chelator, did not significantly alter the TMP-induced ISC. No additive effect of forskolin and 3-isobutyl-1-methylxanthine (IBMX) was observed on the TMP-induced ISc, but it was significantly reduced by a protein kinase A inhibitor, H89.RIA results showed that TMP (1 mmol/L) elicited a significant increase in cellular cAMP production, which was similar to that elicited by the adenylate cyclase activator, forskolin (10 μmol/L). The TMP-elicited ISC as well as forskolin- or IBMX-induced ISC were abolished in mice with homozygous mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) presenting defective CFTR functions and secretions.CONCLUSION: TMP may stimulate cAMP-dependent and CFTR-mediated Cl- and HCO3- secretion. This may have implications in the future development of alternative treatment for constipation.
关 键 词:Adrenergic beta-Agonists Animals Anions Colon CONSTIPATION Cystic Fibrosis Transmembrane Conductance Regulator Male MICE Mice Inbred CFTR PYRAZINES RATS Rats Sprague-Dawley Research Support Non-U.S. Gov't
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...