检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华南理工大学计算机科学与工程学院,广州510006
出 处:《沈阳工业大学学报》2010年第6期693-698,共6页Journal of Shenyang University of Technology
基 金:国家自然科学基金资助项目(60573019);广东省科技计划项目(2009B030803004);广东省重点实验室开放基金项目(CCNL-200704);广东省自然科学基金博士科研启动基金项目(07300561)
摘 要:针对经典去噪模型易造成图像细节丢失以及确定性算法无法自动估计去噪过程中的未知参数等问题,提出一种新的图像去噪算法.该算法在贝叶斯框架下,用总变分模型(TV)和伽马分布分别刻画原始图像及未知参数的统计特征,并基于最大联合分布的推导,估计最优原始图像.总变分模型使最终的能量泛函非线性且不可微分,因此,引入迭代重加权最小二乘法(IRLS),通过迭代的方式用加权的L2范数逼近L1范数来表示图像的统计模型.实验结果表明,该算法可有效去除图像的噪声,提升去噪速度,使所恢复的图像在实际视觉效果和信噪比等方面均优于其他同类算法.Aiming at such problems as the image detail loss caused by classical denoising models and the unable estimation of unknown parameters in denoising process by deterministic algorithms,a new image denoising algorithm was proposed.The algorithm used the total variation model and Gamma distribution to depict the statistical characteristics of the original image and unknown parameters in Bayesian framework,respectively.The optimal original image was estimated through deriving the maximum joint distribution.Due t...
关 键 词:图像去噪 贝叶斯框架 最大联合分布 先验模型 总变分模型 拉普拉斯分布 数值计算 迭代重加权最小二乘法
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117