检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:袁拥军[1]
机构地区:[1]湖南省浏阳市第一中学,410300
出 处:《数理化学习(高中版)》2005年第13期8-10,共3页
摘 要:求点到平面的距离是高考热点问题,直线与平面间的距离,两平行平面间的距离,都可以转化为点到平面的距离来解决.下面介绍几种点到平面的距离的求法.一、直接法1.利用空间图形的性质寻求垂足的位置,直接向平面引垂线,构造三角形求解.例1已知ΔABC,AB=9,AC=15,∠BAC=120°,ΔABC所在平面α外一点P到此三角形三个顶点的距离都是14,求点P到α的距离.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117