基于人工神经网络技术的综放导水断裂带高度预计  被引量:34

Height forecast of water conducted zone with top coal caving based on artificial neural network

在线阅读下载全文

作  者:陈佩佩[1] 刘鸿泉[1] 朱在兴[2] 闫艳[3] 

机构地区:[1]天地科技股份有限公司开采所事业部,北京100013 [2]北京邮电大学资产管理处,北京100876 [3]天地科技股份有限公司高新技术事业部,北京100013

出  处:《煤炭学报》2005年第4期438-442,共5页Journal of China Coal Society

摘  要:在对综放开采条件下导水断裂带发育规律分析的基础上,将基于非线性理论的人工神经网络技术用于煤层覆岩破坏高度的预测,选取采高、基岩柱厚度、倾角、顶板单轴压强度、泥岩比例和覆岩结构6种因素作为导水断裂带预测模型的影响因子,建立导水断裂带高度预测模型,并在我国首个海域下综放工作面加以应用.Based on the analysis of the water contucted zone's development rule with fully mechanized top coal caving, forecased the height of seam overlying rock using artificial neural network technology. Six influence factors of water contucted zone's height were selected, viz. mining height, base rock thickness, obliquity, uniaxial compressing strength of roof, scale of mudstone in overlying rock, and structure of overlying rock. The height forecast model of water contucted zone's was established based on artificial neural network, and which was applied in the first fully mechanized top coal caving face under sea in China.

关 键 词:综采放顶煤 导水断裂带 人工神经网络 

分 类 号:TD823.49[矿业工程—煤矿开采]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象