检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华南理工大学计算机研究所,广东广州510641
出 处:《计算机工程与设计》2005年第8期1986-1987,1996,共3页Computer Engineering and Design
基 金:国家自然科学基金项目(60003019)
摘 要:朴素贝叶斯分类器理论基础好,分类精度高。利用特征词权重函数修改朴素贝叶斯分类器,进而利用它实现专利文本的自动分类,不仅减少了专利人工分类的工作量和分类错误,而且为技术跟踪、竞争分析等提供了有效支持。实验与应用表明改进的朴素贝叶斯分类器用来解决专利分类是有效的。Based on naive bayes classifier having solid theory foundation and high accuracy rate of classification, the classical naive bayes classifier was firstly improved by using term weight function in text, and then the patent categorization was implemented. This approach not only reduced manual labor and the categorization error, but also supported for the technology tracing, competition intelligence etc.The experiments and applications illustrate that the improved naive bayes classifier can be utilized to classify patents efficiently.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145