检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《化工学报》2005年第8期1511-1515,共5页CIESC Journal
基 金:上海启明星项目(04QMX1433);国家重点基础研究发展规划项目(2002CB312200);国家高技术研究发展计划项目(2002AA412110)~~
摘 要:提出了一种具有强非线性表达能力的自适应偏最小二乘回归(APLSR)方法,并应用于初顶石脑油干点软测量模型建立.APLSR对于指定的预测对象,将根据样本在自变量空间中的分布,分析它们对预测对象的预报能力,自适应地为各个样本分配权值,然后从加权样本数据中提取和选定PLS成分,实施自适应加权PLSR,从而获得预报性能良好的模型.同时提出将前一时刻初顶石脑油干点人工分析值引入作为模型的自变量,从而进一步提高了软测量模型的预测精度.A novel adapting partial least square regression (APLSR) approach was proposed to develop the naphtha dry point soft sensor of the primary distillation tower. Many operation conditions were related to naphtha dry point and there existed a significant correlation among them. In order to obtain a naphtha dry point soft sensor with high predicting correctness, the different predicting contribution ratios of modeling samples were taken into account by APLSR and the optimal number of the latent variables was obtained according to the predicting ability of the soft sensor. When APLSR was used for the predicting sample, each modeling sample was weighted according to its ratio of predicting contribution for the predicting sample and satisfactory results were obtained. Further, the previous analysis value of the naphtha dry point was regarded as a new independent variable for the soft sensor and the predicting correctness of the soft sensor was enhanced remarkably.
关 键 词:自适应 加权回归 偏最小二乘回归 石脑油 干点 软测量
分 类 号:O212.4[理学—概率论与数理统计] TQ021.8[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145