检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京航空航天大学经济与管理学院,江苏南京210016
出 处:《小型微型计算机系统》2005年第9期1551-1555,共5页Journal of Chinese Computer Systems
基 金:国家自然科学基金项目(79970003)资助.
摘 要:研究了在n×n的正方形棋盘中,骑士马走非正规马步(r,s)、r≥1、s>2(或称广义马步),是否能经过棋盘中每个点一次,且仅一次又回到出发点的问题,即广义马步哈密顿圈问题.论文首先给出了已有的研究成果,然后从理论上证明了在n×n,n≤r+s+1的正方形棋盘中不存在广义马步哈密顿圈.最后用实证的方法,提出了在n×n,n≥2(r+s)的棋盘中存在广义马步哈密顿圈的猜想,并利用实证与链接构造法,证明了对于(r=1,s=4)的广义马步情况,当n≥10时,存在广义马步哈密顿圈.This paper is about the research on knight's circuits with irregular moves (r, s), r ≥ 1, s 〉 2, on square hoards. Knight's circuit means the knight moves to every square on the board exactly once and then back to the start, what is a Hamil- ton circuit. First the paper gives the results already made on this field, then we proof that there is no knight's circuit on a board equal to or smaller than (r+s + 1)×(r+s+ 1). Afterwards the results of practical research are presented to show that there are knight's circuits on boards 2(r+s)× 2(r+s). At last we make the supposition that there exists a knight's circuit on boards n×n with n≥2 (r+s) and proof by the method of connecting boards that it is true for a knight with move (r=,s=4).
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147