检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:车林仙[1]
机构地区:[1]泸州职业技术学院机械系
出 处:《机械设计》2005年第9期51-54,共4页Journal of Machine Design
摘 要:微粒群优化算法(PSO)具有算法简单、收敛速度较快、全局优化能力较强、控制参数少等优点。基于“三杆组”方法建立了综合StephensonⅢ型六杆函数发生机构的一般方程组,并将之转化为无约束优化模型。首次应用一种改进的PSO———多步长PSO(MSPSO)求解此优化问题,找到了实现输入角-输出角对应精确位置数最大时该问题的一批有意义解,为实际机构的设计提供了多种备选方案。The algorithm of particle swarms optimization (PSO) possesses the advantages of simplified computing method, rather quick convergence speed and less controlling parameters etc.. On the basis of “three-bar group” method the general equation set of synthetic Stephenson Ⅲ typed 6-bar function generative mechanism was established, and let it be transformed into the no constraint optimization model. A kind of improved PSO multi-step PSO (MSPSO) method has been applied for the first time to solve this optimization problem, and a number of significant solutions for realizing this optimization problem while the precision number of position corresponding to the inputting angle and outputting angle have been found, thus provided many kinds of schemes prepared for selection for the design of practical mechanisms.
关 键 词:Stephenson Ⅲ型六杆机构 函数发生器 机构尺度综合 微粒群优化算法(PSO)
分 类 号:TH112[机械工程—机械设计及理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.40