检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安交通大学生物医学信息工程教育部重点实验室,生物医学工程研究所西安710049
出 处:《中国生物医学工程学报》2005年第4期421-425,434,共6页Chinese Journal of Biomedical Engineering
基 金:国家自然科学基金资助项目(30370395)。
摘 要:本研究提出了利用事件相关脑电复杂度提取大脑运动意识特征,应用Mahalanobis距离判别式分析法,对人脑想象左右手运动任务进行分类,获得了满意的结果。对受试者想象左右手运动期间在大脑初级感觉运动皮层区记录的脑电信号采用复杂度分析方法量化了事件相关去同步(ERD)和事件相关同步(ERS)时程,结果表明EEG复杂度特征较好反映了ERD/ERS变化时程。最后对测试数据进行分类,最大分类正确率达到86.43%,通过最大分类正确率,最大信噪比,最大互信息等评价指标比较,验证了该方法的有效性,从而为大脑运动意识任务的特征提取及分类提供了新思路。The method extracting brain motor consciousness feature by event-related EEG complexity was proposed in this paper. Applying Mahalanobis distance discriminant analysis to distinguish the left and right hand motor imaginary tasks,the satisfactory results were obtained, The data from BCI competition 2003 provided by Graz University of Technology were analyzed. ERD/ERS time course was quantified by complexity analysis method. The results showed that EEG complexity feature effectively reflected ERD/ERS time course changes. Finally, the test data were analyzed and the analysis results were evaluated from three performances including the maximum classification accuracy, maximum SNR, maximum mutual information. The evaluation results indicated that the method presented in this paper was effective and it might provide a new approach to identify brain consciousness tasks.
关 键 词:脑电复杂度 特征提取 ERD/ERS MAHALANOBIS距离 信噪比 互信息(MI)
分 类 号:R318[医药卫生—生物医学工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200