检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国防科技大学ATR国家重点实验室,湖南长沙410073
出 处:《电光与控制》2005年第5期28-31,共4页Electronics Optics & Control
摘 要:一维距离像是自动目标识别的一种重要特征,它对目标姿态变化很敏感,只有通过进一步处理提取稳定特征才能够有效用于识别。针对距离像的这种姿态敏感性,首先分析了主分量分析(PCA)的降噪原理与核主分量分析(KPCA)的特征提取能力,然后提出先用PCA滤波对一维距离像降噪再用KPCA提取较大姿态角范围内稳定特征的雷达目标一维距离像识别框架,并用四类目标的实测数据进行分类实验,表明该算法确实能够提高识别性能。One-dimensional range profile is an important feature for automatic target recognition, which is very sensitive to attitude changes of the target. Only by further processing and feature extracting can it be used for effective target recognition. In this paper, the principles of Primary Component Analysis (PCA) based noise-reduction and the powers of Kernel Primary Component Analysis (KPCA) for feature extraction are analyzed in detail. Then, a framework for automatic radar target recognition based on one-dimensional range profile is put forward, in which PCA filtering is used for noise-reduction of the range profile, and KPCA is proposed for extracting the stabilization feature over a large attitude angle. The results of recognition experiment with targets of four types show that the approach can really improve the performance of recognition.
关 键 词:雷达目标识别 一维距离像 主分量分析 核主分量分析
分 类 号:V271.4[航空宇航科学与技术—飞行器设计] TN957.51[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38