基于主分量分析的一维距离像雷达目标识别  被引量:6

Automatic radar target recognition based on PCA method using one-dimensional range profile

在线阅读下载全文

作  者:张仲明[1] 姜卫东[1] 陈曾平[1] 

机构地区:[1]国防科技大学ATR国家重点实验室,湖南长沙410073

出  处:《电光与控制》2005年第5期28-31,共4页Electronics Optics & Control

摘  要:一维距离像是自动目标识别的一种重要特征,它对目标姿态变化很敏感,只有通过进一步处理提取稳定特征才能够有效用于识别。针对距离像的这种姿态敏感性,首先分析了主分量分析(PCA)的降噪原理与核主分量分析(KPCA)的特征提取能力,然后提出先用PCA滤波对一维距离像降噪再用KPCA提取较大姿态角范围内稳定特征的雷达目标一维距离像识别框架,并用四类目标的实测数据进行分类实验,表明该算法确实能够提高识别性能。One-dimensional range profile is an important feature for automatic target recognition, which is very sensitive to attitude changes of the target. Only by further processing and feature extracting can it be used for effective target recognition. In this paper, the principles of Primary Component Analysis (PCA) based noise-reduction and the powers of Kernel Primary Component Analysis (KPCA) for feature extraction are analyzed in detail. Then, a framework for automatic radar target recognition based on one-dimensional range profile is put forward, in which PCA filtering is used for noise-reduction of the range profile, and KPCA is proposed for extracting the stabilization feature over a large attitude angle. The results of recognition experiment with targets of four types show that the approach can really improve the performance of recognition.

关 键 词:雷达目标识别 一维距离像 主分量分析 核主分量分析 

分 类 号:V271.4[航空宇航科学与技术—飞行器设计] TN957.51[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象