检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王凯[1] 周建国[1] 夏德麟[1] 晏蒲柳[1] 董伟钛[1]
出 处:《计算机应用研究》2005年第11期61-63,共3页Application Research of Computers
基 金:国家自然科学基金资助项目(90204008)
摘 要:首先对文本提取特征向量,再利用词语相似度求出文本特征子集,由支持向量机进行文本分类,实现了一个中文文本自动分类系统,并对该系统进行了针对SVM大规模真实文本的试验测试。试验表明,该方法的系统的招回率较低,而准确率较高,取得了令人满意的结果。First we get the feature extraction, then get the text feature sunset by using the similarity of words, last we get text categorization by using the support vector machine, the tests on the true large-scale text are made. The results show that the recall is comparatively low and the precision is comparatively high.
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.26.71