检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]杭州电子科技大学理学院,浙江杭州310018
出 处:《杭州电子科技大学学报(自然科学版)》2005年第5期95-98,共4页Journal of Hangzhou Dianzi University:Natural Sciences
摘 要:该文主要探讨一维不可测集的构造以及一维不可测集全体所组成的类的势。为了得到主要结果,讨论了一维开集全体组成的类的势,证明了一维开集全体组成的类具有连续势;讨论了一维不可测集的构造,在承认策莫罗选择公理的前提下,依据Lebesgue测度的平移不变性,用构造的方法给出了一维不可测集,从而说明了一维不可测集的存在性;并用类似的构造方法证明了任何正测度集都具有不可测子集;在承认Cantor连续统假设的前提下,说明了任何一维不可测集都具有连续势;最后,证明了一维不可测集全体所组成的类的势为2c。This paper mainly concerns the construction of one - dimension nonmeasurable set and the cardinality of its class. For this purpose the paper proves that the class of all open sets has the cardinality of c, which follows studying the eardinality of the class of open sets. After studying the constrnction of nonmeasurable set, the paper gives out an example of nonmeasurable set, by assuming the Zennelo Axiom of choice holds, basing on the invariance of Lebesgue measure under translation modulo 1, using the constructive method which is used to prove every positive set has an nonmeasurable subset, latter. The paper also proves that every, nonmeasurable set has the cardinality of c, by assuming that Cantor's hypothesis of there being no other cardinality between co and c holds. Finally, the paper proves that the class of nonmeasurable sets has the eardinality of c.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.71.161