检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华南理工大学自动化学院,广东广州510640 [2]五邑大学信息学院,广东江门529020
出 处:《公路交通科技》2005年第11期123-125,129,共4页Journal of Highway and Transportation Research and Development
基 金:广东省自然科学基金资助项目(010486)
摘 要:高速公路限速控制是一个非线性时变系统,难于用数学模型准确建模,提出一种模糊神经网络实现限速控制。本文阐述了网络的结构和学习算法,根据高速公路车辆群状态、路面性能、气象条件等,建立交通流速度限制模糊神经网络模型,并进行了仿真研究。仿真结果表明网络训练速度快、精度高,适合交通流限速控制的在线建模。该方法切实可行,可使交通流更加均匀、稳定,从而提高主线运行的安全和效率。The control for speed limit on expressway is a nonlinear and time variable system, it is difficult to simulate with a mathematical model.A neuro-fuzzy network is proposed to solve the problem. The network structure and learning algorithms are formulated. The network model is built based on such information as the number of vehicles on expressway, the performance of the road surface, and the weather conditions.Simulation study is carried out by taking full advantage of a computer.Simulation results show that such a network has fast learning ability and high accuracy.It is suitable to realize on-line modeling for speed limit of expressway traffic. The approach is practical and effective. It can make the traffic flow more uniform and steady, so that the safety and efficiency on expressway are improved.
分 类 号:U491[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7