检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华侨大学工业生物技术研究所,泉州362021
出 处:《生物工程学报》2005年第6期960-964,共5页Chinese Journal of Biotechnology
基 金:国家自然科学基金资助项目(No.20276026);国务院侨办科研基金资助项目(No.05QZR06)。~~
摘 要:采用主成分分析、偏最小二乘回归和BP神经网络三种方法对嗜热和常温蛋白进行模式识别。结果表明,三种方法对训练集拟合的平均正确率分别为92%、95%和98%,对测试集进行预测的平均正确率分别为60%、72.5%和72.5%,对嗜热蛋白预测正确率最高为75%,常温蛋白最高为85%。构建了数学模型并对其生物学意义进行了解释,建立了一种基于序列的识别嗜热和常温蛋白的新方法。Pattern recognition of thermophilic and mesophilic proteins were studied through principle component analysis, partial least-square regression and BP neural network. The results showed that the fitting accuracy of the three methods was 92% , 95% and 98% , respectively. And the forecasting accuracy was 60% , 72.5% and 72.5%, respectively. The best forecasting accuracy for thermophilic proteins was 75%, and for mesophilic proteins was 85%. A mathematical model was established and the biological meaning of it was expatiated on, a new method to discriminate the thermophilic and mesophilic proteins based on their sequences was established here.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38